skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Shouwei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Proxy evidences suggest abrupt southward displacements of the intertropical convergence zone (ITCZ) during Heinrich Stadial 1 (HS1) and Younger Dryas (YD) against a long‐term trend of northward ITCZ migration from Last Glacial Maximum to modern climate. Climate model simulations reveal that the abrupt ITCZ changes in HS1 and YD are mainly driven by ice‐sheet‐induced meltwater while the long‐term ITCZ trend primarily results from orbital variations, rising atmospheric greenhouse gases and ice‐sheet retreats during the last deglaciation. Atmospheric energetics analysis elucidates two important processes driven by meltwater—less net radiation entering the top‐of‐atmosphere (TOA) in the Northern Hemisphere than the Southern Hemisphere and a reduced global cross‐equatorial oceanic heat transport from the compensation between Atlantic and Indo‐Pacific heat transports—induce the southward ITCZ shift during HS1. Ice sheet extent changes also create a large interhemispheric TOA radiation asymmetry during HS1, which, however, is not via the surface albedo feedback. 
    more » « less